Effective Time for Application of Slurry Seal on Asphalt Pavements in the Truckee Meadows Region

University of Nevada Reno (UNR)
Western Regional Superpave Center

Elie Y. Hajj, Ph.D.

2012 CCSA Pavement Preservation Workshop/Conference
Sacramento, February 10, 2012
Problem Statement and Objective

- The time of Slurry Seal (SS) application is left to the Project Engineer judgment and practice.
 - SS right after construction
 - SS after 1, 3, 5 etc. years of service
 - ...

- **Objective:** Evaluate the field performance & effectiveness of SS on asphalt pavements in Truckee Meadows Region
Research Phases

Phase I:
- Evaluate \textit{effectiveness} \& \textit{optimum time} for \textit{single} application of slurry seal

Phase II:
- Evaluate \textit{effectiveness} \& \textit{optimum time} for \textit{sequential} application of slurry seal
Phase I: Research Approach

- Collect & evaluate performance data of asphalt pavements
 - *without* slurry seal
 - *receiving* single slurry seal at various times: 0, 1, 3, 5, 7, and 9.

- Identify *effectiveness* & *optimum time* for SS application.
Asphalt pavement sections were identified within the jurisdictions of: WCED, COR and COS.

<table>
<thead>
<tr>
<th>Initial Construction Pavement Type</th>
<th>Road Classification</th>
<th>ADT</th>
<th>Total number of sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>Arterial</td>
<td>≥ 10,000</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>< 10,000</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Residential</td>
<td>< 6,000*</td>
<td>525</td>
</tr>
<tr>
<td>Overlay</td>
<td>Arterial</td>
<td>≥ 10,000</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Collector</td>
<td>< 10,000</td>
<td>226</td>
</tr>
<tr>
<td></td>
<td>Residential</td>
<td>< 6,000*</td>
<td>1,848</td>
</tr>
</tbody>
</table>

*With a high percentage of trucks (> 4%)
Within each group (i.e. Road class), pavement sections were broken into three categories:

- **Do –Nothing**: SS was not applied to the pavement
- SS applied immediately after construction (referred to as \(0\))
- SS applied at: 1, 3, 5, 7, and 9 years after construction

Performance was measured in terms of PCI.
Phase I: Prediction Performance Models

New Construction - Arterial

![Graphs showing PCI vs Age in Years for New Construction and Slurry Seal at different years (0, 1, 3, 5, 7, 9).]
Phase I: Prediction Performance Models

Overlay - Arterial

[Graphs showing PCI over age for different scenarios]
Phase I: Prediction Performance Models

New Construction - Collectors

Age in Years

PCI

0 100
20
40
60
80
100
0 2 4 6 8 10 12 14 16 18 20

New Construction
Slurry Seal at year 0

New Construction
Slurry Seal at year 1

New Construction
Slurry Seal at year 3

New Construction
Slurry Seal at year 5

New Construction
Slurry Seal at year 7

New Construction
Slurry Seal at year 9

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Prediction Performance Models

Overlay - Collector

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Prediction Performance Models

New Construction - Residential

Age in Years

PCI

- New Construction
- Slurry Seal at year 0

Age in Years

PCI

- New Construction
- Slurry Seal at year 1

Age in Years

PCI

- New Construction
- Slurry Seal at year 3

Age in Years

PCI

- New Construction
- Slurry Seal at year 5

Age in Years

PCI

- New Construction
- Slurry Seal at year 7

Age in Years

PCI

- New Construction
- Slurry Seal at year 9

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Prediction Performance Models

Overlay - Residential

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Slurry Seal *Performance Life* & *Extension in Pavement Service Life*

Performance Life ~ 2 yrs

Performance Life ~ 3 yrs

Extension in Pavement Service Life ~ 2 yrs
Phase I: SS Performance Life & Extension in Pavement Service Life

- In general, performance life ranged between 2 & 4 years.
 - Except when slurry seal was applied at year 0 and 1, performance life ranged from 0 to 1 year.

- Except few cases, the pavement service life was not extended by application of the single slurry seal.
Phase I: Slurry Seal Effectiveness

Relative Benefit = 100×B / B₀

Benefit Cost Ratio = B / C

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Effectiveness Analysis – New Construction

![Graphs showing benefit, relative benefit, and benefit-cost ratio over the years for different types of roads (Arterial, Collector, Residential)].

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Effectiveness Analysis – Overlay

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Conclusion

- Application of SS *immediately* or *one year after* construction of asphalt layer is not effective in terms of:
 - the benefit to the users and
 - the benefit-cost ratio for the agency.

Optimum time for application of a Single Slurry Seal:
- Newly constructed pavements: 3 years after construction.
- Pavements subjected to overlays: 3-5 years after construction.
Phase II:
Sequential Slurry Seal Applications

- Collect & evaluate performance data of asphalt pavements
 - With a *first* slurry seal application at: 0, 1, 3 and 5 years
 - receiving a *second* slurry seal at either: 7 or 9 years.

- Identify *effectiveness* & *optimum time* for sequential SS application.

- PMS data from WCED, COR and COS
Phase II: Sequential Slurry Seal Applications

<table>
<thead>
<tr>
<th>Initial Construction Pavement Type</th>
<th>Year of the 1st Slurry Seal Application</th>
<th>Total Number of Sections</th>
<th>2nd Slurry Seal Applied at year 7</th>
<th>2nd Slurry Seal Applied at year 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>New Construction</td>
<td>0</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>15</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>15</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>N/A</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Overlay</td>
<td>0</td>
<td>15</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>17</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>N/A</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Total Number of Sections</td>
<td>85</td>
<td></td>
<td>87</td>
<td></td>
</tr>
</tbody>
</table>
Newly Constructed Pavements:

1st SS at year 3, 2nd SS at year 7

- **1st slurry seal**: 4.0 yrs
- **2nd slurry seal**: 3.5 yrs

Predicted Do-Nothing performance curve (Using performance models developed in Phase I)

Predicted SS at year 3 performance curve (Using performance models developed in Phase I)
Newly Constructed Pavements: 1st SS at year 3, 2nd SS at year 9

Predicted Do-Nothing performance curve (Using performance models developed in Phase I)

Predicted SS at year 3 performance curve (Using performance models developed in Phase I)

Age in Years

Present Condition Index (PCI)
Overlay Pavements:
1st SS at year 3, 2nd SS at year 7

Predicted Do-Nothing performance curve
(Using performance models developed in Phase I)

Predicted SS at year 3 performance curve
(Using performance models developed in Phase I)
Overlay Pavements:
1st SS at year 3, 2nd SS at year 9
Phase II: Slurry Seal Effectiveness

Relative Benefit = \(\frac{100 \times B}{B_0} \)

Benefit-Cost Ratio = \(\frac{B}{C} \)
Phase II:

Effectiveness
PHASE II: Conclusions

- Application of first SS immediately or one year after construction is not effective in terms of both the benefit to users and benefit cost ratio for the agency.

- Regardless of construction activity, optimum time for a sequential slurry seal is when first SS is applied in year 3 & second SS is applied in year 7 (i.e. 4 years after the application of the first SS)
PHASE II: Conclusions

- Pavement service life was extended by 2.0 to \(~4.0\) years when first SS was applied in years, 3 or 5 and second SS in either year 7 or 9.
- For those application conditions, the sequential SS was effective in delaying the time for reconstruction.
OVERALL RECOMMENDATION

- For both new and overlay constructions, it is recommended that the agency applies
 - First slurry seal 3 years after the construction of the asphalt layer and the second slurry seal 7 years after the construction.
Acknowledgment

- Financial Support of Washoe RTC

- City of Reno, City of Sparks and Washoe County, Nevada for providing access to their pavement management data.
THANK YOU FOR YOUR ATTENDANCE

Visit our websites at:
www.wrsc.unr.edu
www.arc.unr.edu

Contact Information:
Peter E. Sebaaly, psebaaly@unr.edu, 775-784-6565
Elie Y. Hajj, elieh@unr.edu, 775-784-1180