Calibration

Rex Eberly, Bergkamp Inc.

What will we cover?

- Basics of calibration
- Correlation to equipment operation
- Calculations

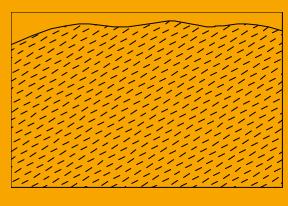
History of Calibration Process

- In early days of industry, calibration performed by operator judgment.
- Worked fine for unmodified, slow set slurry.
- Introduction of polymer modified emulsions required conforming to tighter specifications.
- Results in better quality control of the product.

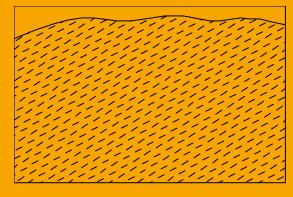
Why do we calibrate?

- Allow the machine to be set such that the ratios of aggregate, emulsion and fines stay fixed at a predetermined level.
- Ensure quality control of the system for the contractor and buying agency
- Both buyer agency and contractor have accurate forecasts and records of materials used.

What is calibration?


- Process of measuring by weight
 - Actual output of:
 - Aggregate
 - Emulsion
 - Mineral filler (cement) dependent on brand of paver.
- Correlated to revolutions of the aggregate belt

- The mix design specifies the amount of emulsion as a percentage of the amount of aggregate, by weight.
- For example, 10% emulsion content in the mix design means the weight of the emulsion shall be 10% of the weight of the aggregate. To then switch to a 12% content requires changing the quantity of emulsion or aggregate.
- If we mixed in a batch...


10%

Emulsion 10 lbs

Emulsion 12 lbs

Rock - 100 lbs

Rock - 100 lbs

12%

Machine Calibration

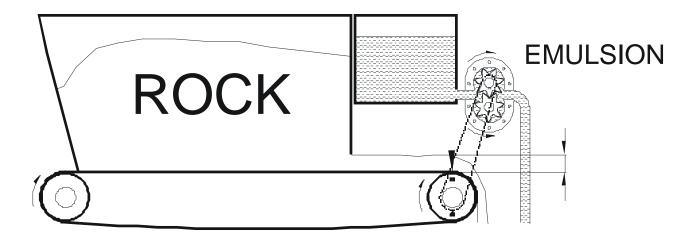
Since we have a continuous feed operation, we must match the aggregate delivery to the emulsion pump delivery.

This is done with "counters" in the calibration process.

Counters

- Count, or totalize the revolutions of a shaft, pulley or sprocket.
- In some applications, counts fractions of a revolution.
- Counters are not rate dependent.

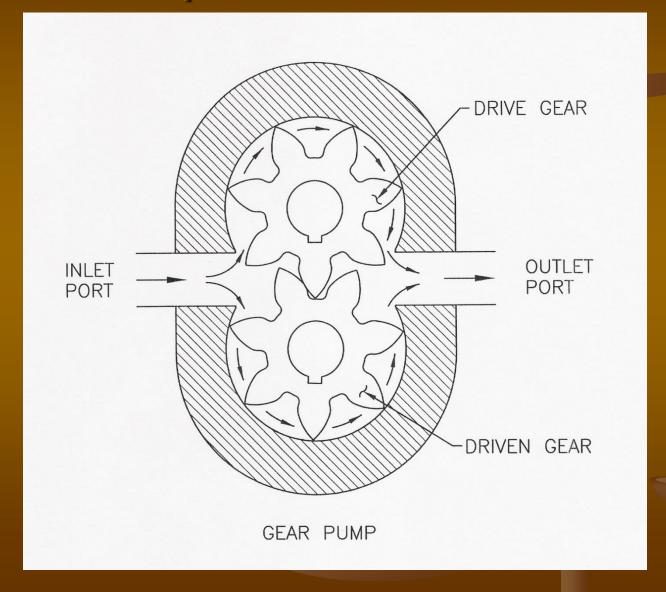
The aggregate is delivered by a conveyor belt, delivering a consistent amount of aggregate per revolution (at a given gate setting) from the hopper into the pugmill.

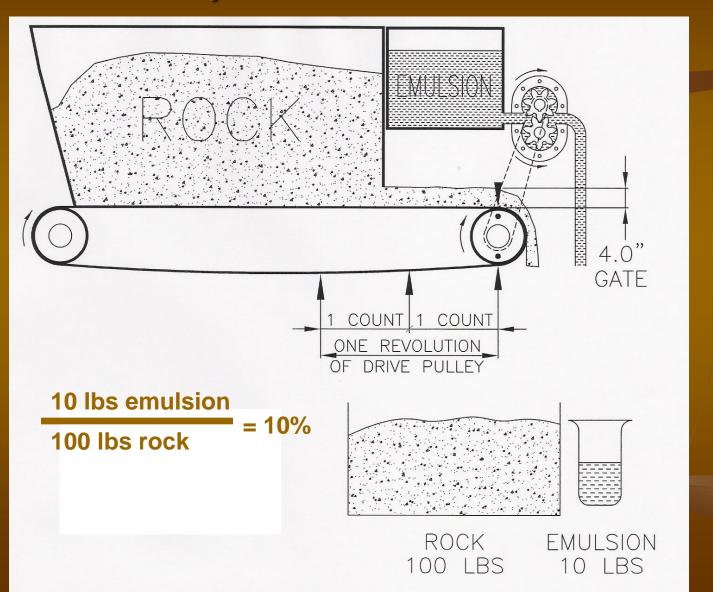


The aggregate belt and the emulsion pump are mechanically tied together to ensure a consistent mix.

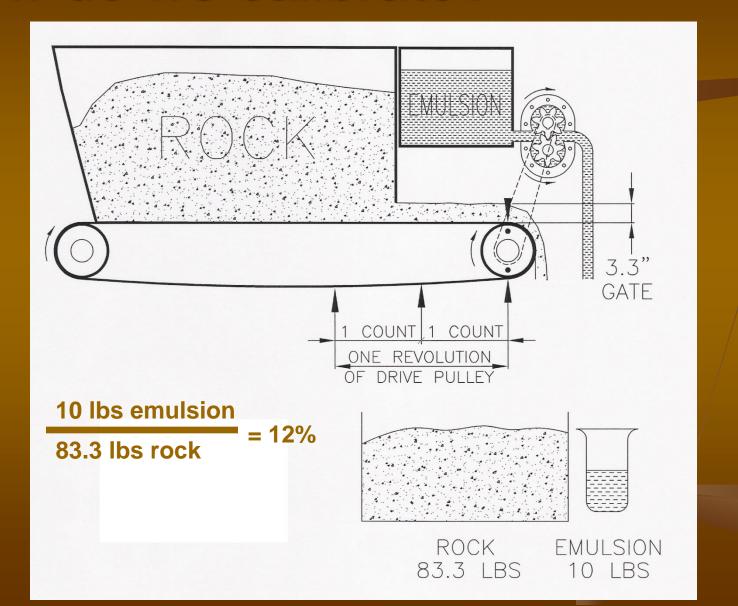
Emulsion is delivered by a pump, of which there are several types.

- Positive Displacement
 - Gear Pump
- Variable Displacement
 - Rotary Piston Pump




Gear Pump with strainer

Rotary Piston Pump


Gear Pump (Positive Displacment)

For systems with positive displacement pumps, the gate setting of the hopper is varied to achieve different emulsion/aggregate ratios.

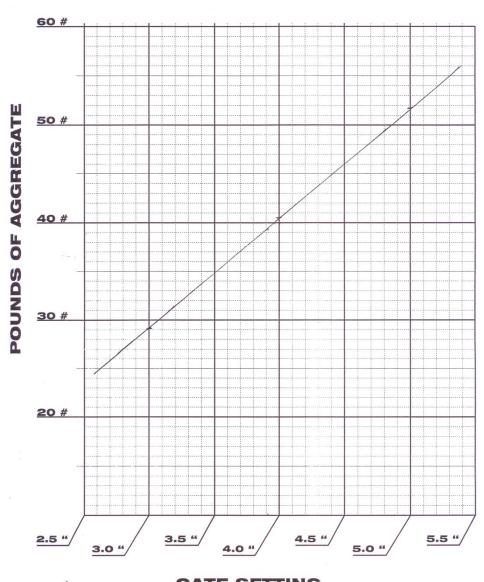
How do we determine that a 3.3 inch gate setting was required to get a 12% mix design?

By performing the calibration procedure.

Emulsion and Cement

Job #	30/		102	Date	5/1/2
	En	nulsion Ca	libration		
Emulsion	Foll Weight LBS	Empty Weight Ld5	Net Weight 185 (=Full-Empty)	No. of Counts	LBS per Coun
Sample 1	260	0	260	50	5.20
Sample 2	270	0	270	50	5.40
Salati	180	0	180	35	5.20
	must be entered in t Desire	he Full Weight, Ew d emulsion perc	Desired Emu 3. 8 Agg P. pty Weight, and Number entage must also be en	lsion % C- of Counts Col	5-26 12 %
	must be eftered in t Desire ***DON*	he Full Weight, Ch d emulsion perc T FORGET TO EN	Desired Emu 3. 8 Agg P. per Weight, and Number entage must also be enter ter date & UNIT NUM	lsion % C- of Counts Col	12 %
	must be entered in t Desire ***DON* Cel	he full Weight, End demulsion percar FORGET TO EN	Desired Emu 3. 8 Agg R per Weight, and Number entage must also be ent ter darf & UNIT NUM es Calibration	lsion % C- of Counts Col	12 %
	must be eftered in t Desire ***DON*	he Full Weight, Ch d emulsion perc T FORGET TO EN	Desired Emu 3. 8 Agg P. per Weight, and Number entage must also be enter ter date & UNIT NUM	lsion % C- of Counts Col	12 %
Data	must be entered in t Desire ***DON* Cel	ment / Fin Empty Weight	Desired Emu 3. 8 Agg P. per Weight, and Number entage must also be ent TER DATE & UNIT NUM es Calibration Net Weight LBS	Ision % C- of Counts Colered. BER***	/2 %
Data	must be entered in t Desire ***DON* Cel	ment / Fin Empty Weight	Desired Emu 3. 8 Agg P. per Weight, and Number entage must also be ent TER DATE & UNIT NUM es Calibration Net Weight LBS	Ision % C- of Counts Colered. BER***	/2 %

Data must be entered in the Full Weight, Empty Weight, and Number of Counts Columns.


Destrad Cement / Fines percentage must also be entered.

DON'T FORGET TO ENTER DATE & LINIT NUMBER

Desired Cement / Fines %

Aggregate Calibration

Gate Setting (inches)	Full Weight LBS	Empty Weight LBS	Net Weight Lts (=Full-Empty)	No. of Counts	LBS per Coun
Sample 1	59280	56260	3020	100	3.02
Sample 2	56260	53360	2900	100	2.90
Seemale 1	53360	50300	3060	100	30.06
Wet Agg. Lbs./Count	29.9	/ Moisture Factor	1.02	Dry Agg.Lbs./Count	29,3/
Gate Setting (Inches)	Full Weight LBS	Empty Weight LBS	Net Weight LBS (=Full-Empty)	No. of Counts	LBS per Count
Sample 1	50300	46160	4/40	/oc	41.4
Sample 2	96/60	41960	4200	100	192.0
pening 9	55/80	51120	4060	100	40.6
Wet Agg. Lbs./Count	41.3	/ Maisture Factor	1.02	Dry Agg.Lbs./Count	40.5
Gate Setting (inches)	Full Weight LBS	Empty Weight LBS	Net Weight LAS (=Fall-Empty)	No. of Courts	LBS per Count
Sample &	51120	47240	3880	74-	52.4
Sample 2	47240	93860	3980	7.5	53.1
Cample 3	55000	5/020	3980	75	53.7

an example only, an actual calibration must be performed!

Presented as

E SEITING

Page 4 of 7

For systems using a variable displacement pump, the pump is set at one setting, then the same calibration process as for a positive displacement pump is followed. If the resulting gate setting is very high or very low for the mix design required, the pump setting is changed, then calibrated.

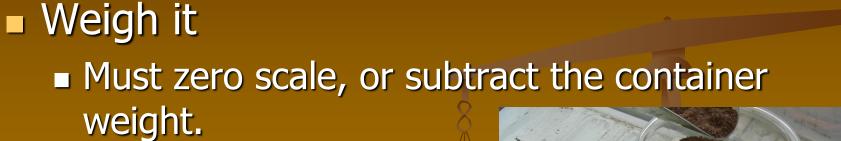
Tri-Rotor volume control 0-100%

Effects of water on rock calibration.

Moisture content describes the amount of moisture in the rock. When calibrating, we want to weigh only the rock.

(weight of wet rock – weight of dry rock)

Moisture content =

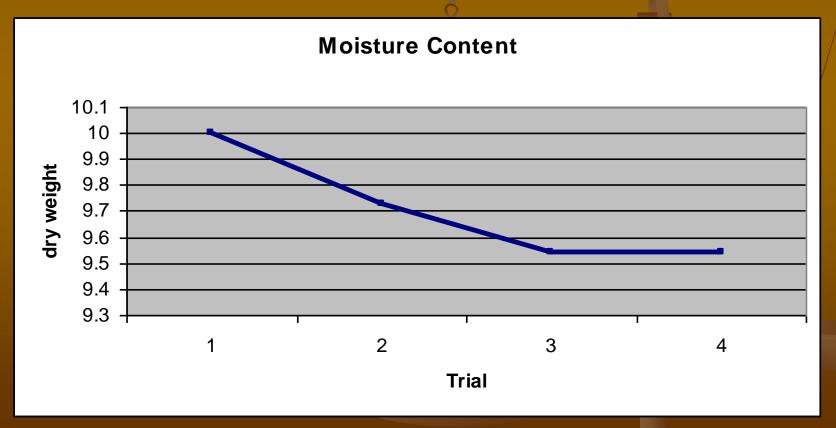

(weight of wet rock)

Obtain sample

Representative sample, not from outside of

pile.

- Dry it out
 - Sunshine
 - Heat



Re-weigh until constant

- Re-weigh it
 - Dry when two consecutive weights are the same.

Calculate:

•Moisture content =

(weight of wet rock – weight of dry rock)

(weight of wet rock)

From graph:

•Moisture content =

$$\frac{1000-954}{1000} = 4.6\%$$

Calibration

