Pavement Preservation in the Wild West

2016 CCSA Pavement Preservation Work Shop
Sacramento, February 10, 2012

Peter E. Sebaaly, PhD, PE
Director
Western Regional Superpave Center
University of Nevada Reno (UNR)
WHAT IS OLD?

- Evaluate *effectiveness* & *optimum time* for *single* application of slurry seal

- Evaluate *effectiveness* & *optimum time* for *sequential* application of slurry seal
WHAT IS NEW?

- Evaluate the **long-term performance** of Cape Seals:
 - Slurry Seal
 - Micro-surfacing
Phase I: Slurry Seal Performance Life & Extension in Pavement Service Life

- Performance Life ≈ 2 yrs
- Performance Life ≈ 3 yrs
- Extension in Pavement Service Life ≈ 2 yrs

Graph showing the PCI vs. Age in Years for:
- New Construction
- Slurry Seal at year 3
- Slurry Seal at year 7

University of Nevada Reno, www.wrsc.unr.edu
In general, performance life ranged between 2 & 4 years.

- Except when slurry seal was applied at year 0 and 1, performance life ranged from 0 to 1 year.

- Except few cases, the pavement service life **was not extended by application of the single slurry seal**.
Phase I: Slurry Seal Effectiveness

Relative Benefit = 100 \frac{B}{B_0}

Benefit Cost Ratio = \frac{B}{C}

Overlay (Do Nothing)

Slurry Seal

PCI

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Age (years)
Phase I: Effectiveness Analysis – New Construction

Year of Slurry Seal Application

Benefit (PCI yrs)

Relative Benefit

Benefit-Cost Ratio (x1000)

University of Nevada Reno, www.wrsc.unr.edu
Phase I: Conclusion

- Application of SS *immediately* or *one year after* construction of asphalt layer is not effective in terms of:
 - the benefit to the users and
 - the benefit-cost ratio for the agency.

Optimum time for application of a **Single Slurry Seal**:

- Newly constructed pavements: *3 years after construction*.
- Pavements subjected to overlays: *3-5 years after construction*.
Phase II: *Newly Constructed* Pavements:
1st SS at year 3, 2nd SS at year 7

![Graph showing predicted condition index (PCI) vs. age in years for newly constructed pavements with first slurry seal at year 3, second slurry seal at year 7, and a do-nothing performance curve using models developed in Phase I.](image)

- **Predicted 1st slurry seal**
- *4.0 yrs*

- **Predicted 2nd slurry seal**
- *3.5 yrs*

University of Nevada Reno, www.wrsc.unr.edu
Phase II: Slurry Seal Effectiveness

Relative Benefit = \(100 \times \frac{B}{B_0}\)

Benefit-Cost Ratio = \(\frac{B}{C}\)

University of Nevada Reno, www.wrsc.unr.edu
Phase II:

Effectiveness

- OL-0-7: 15% (Benefit-Cost Ratio: 2.3)
- OL-0-9: 8% (Benefit-Cost Ratio: 1.2)
- OL-1-7: 12% (Benefit-Cost Ratio: 2.1)
- OL-1-9: 11% (Benefit-Cost Ratio: 1.9)
- OL-3-7: 56% (Benefit-Cost Ratio: 7.7)
- OL-3-9: 46% (Benefit-Cost Ratio: 7.3)
- OL-5-9: 26% (Benefit-Cost Ratio: 4.6)
- NC-0-7: 25% (Benefit-Cost Ratio: 3.8)
- NC-0-9: 21% (Benefit-Cost Ratio: 3.3)
- NC-1-7: 17% (Benefit-Cost Ratio: 2.9)
- NC-1-9: 23% (Benefit-Cost Ratio: 3.8)
- NC-3-7: 88% (Benefit-Cost Ratio: 13.0)
- NC-3-9: 77% (Benefit-Cost Ratio: 11.7)
- NC-5-9: 32% (Benefit-Cost Ratio: 5.4)
PHASE II: Conclusions

- Application of first SS **immediately or one year after** construction is **not effective** in terms of both the benefit to users and benefit cost ratio for the agency.

- Regardless of construction activity, **optimum time for a sequential slurry seal** is when

 first SS is applied in year 3
 &
 second SS is applied in year 7 (i.e. 4 years after the application of the first SS)
OVERALL RECOMMENDATION

For both new and overlay constructions, it is recommended that the agency applies:

First slurry seal 3 years after the construction of the asphalt layer and the second slurry seal 7 years after the construction.
CAPE SEALS: Slurry or Micro

Chip Seal

Asphalt Concrete
Base
Subgrade

Slurry or Micro

Asphalt Concrete
Base
Subgrade
WHY CAPE SEALS

- Snow-Plow Damage
- Chip Loss
- Quieter
- Longer Life
Chip Seal
Chip Seal
Cape Seal: Slurry Seal
Cape Seal: Microsurfacing
Evaluated Sections

<table>
<thead>
<tr>
<th>Age (Service Life)</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Roadways</td>
<td>2</td>
<td>9</td>
<td>3</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>29</td>
</tr>
<tr>
<td>Number of Sections</td>
<td>3</td>
<td>15</td>
<td>5</td>
<td>21</td>
<td>6</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Location/Environment</td>
<td>Incline Village</td>
<td>11</td>
<td>3</td>
<td>4</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>Reno/Sparks</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>13</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Gerlach</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Traffic</td>
<td>A - Arterial</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>B - Collector</td>
<td>1</td>
<td>11</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>C - Residential</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>D – Industrial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>E – Rural Hwy</td>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Surface Type</td>
<td>Micro-Surfacing</td>
<td>3</td>
<td>13</td>
<td>3</td>
<td>10</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Slurry Seal</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>11</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22</td>
</tr>
</tbody>
</table>
Emulsions Grades

<table>
<thead>
<tr>
<th>Year</th>
<th>Chip Seal</th>
<th>Slurry Seal</th>
<th>Micro-surfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>PASS/LMCRS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2001</td>
<td>PASS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2002</td>
<td>PASS</td>
<td>LMCQS</td>
<td>N/A</td>
</tr>
<tr>
<td>2006</td>
<td>LMCRS</td>
<td>N/A</td>
<td>LMCQS</td>
</tr>
<tr>
<td>2007</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2008</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2009</td>
<td>LMCRS</td>
<td>N/A</td>
<td>RTE</td>
</tr>
<tr>
<td>2010</td>
<td>LMCRS</td>
<td>N/A</td>
<td>MSE</td>
</tr>
</tbody>
</table>

LMCRS: Latex-Modified Cationic Rapid Set
LMCQS: Latex-Modified Cationic Quick Set
PASS - "Proprietary" Polymer-Modified Emulsion
MSE – Micro-surfacing Surfacing Emulsion
RTE - Rapid Traffic Emulsion - Polymer-Modified
Quality Control

<table>
<thead>
<tr>
<th>Year</th>
<th>Slurry Seal</th>
<th>Micro-Surfacing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aggregate</td>
<td>Emulsion</td>
</tr>
<tr>
<td>2000</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2001</td>
<td>No Results</td>
<td>No Results</td>
</tr>
<tr>
<td>2002</td>
<td>Pass</td>
<td>Pass</td>
</tr>
<tr>
<td>2006</td>
<td>No Results</td>
<td>No Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>No Results</td>
<td>No Results</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>No Results</td>
<td>No Results</td>
</tr>
</tbody>
</table>
Impact of Construction Practice: Micro
Impact of Traffic Level: Micro

The graph illustrates the PCI (Pavement Condition Index) over age for different traffic levels. The lines represent different traffic categories and their impact on PCI over time. The x-axis represents age in years, while the y-axis represents the PCI value.
Impact of Traffic Level: Slurry

![Graph showing the impact of traffic level on slurry, with various markers representing different conditions or years.](image-url)
Impact of Structure: Slurry

![Graph showing the impact of structure on slurry performance over different sections and years.]
Impact of Pre-PCI: Micro
Impact of Pre-PCI: Slurry
Benefit Cost Ratio

<table>
<thead>
<tr>
<th>Location</th>
<th>Cape Seal</th>
<th>Effective Performance Life (yrs)</th>
<th>Unit Cost ($/yd^2)</th>
<th>Benefit Cost Ratio (yr/$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truckee Meadows</td>
<td>Micro-surfacing</td>
<td>7.0</td>
<td>4.46</td>
<td>1.57</td>
</tr>
<tr>
<td></td>
<td>Slurry Seal</td>
<td>3.5</td>
<td>3.50</td>
<td>1.00</td>
</tr>
<tr>
<td>Incline Village</td>
<td>Micro-surfacing</td>
<td>5.0</td>
<td>4.46</td>
<td>1.12</td>
</tr>
<tr>
<td></td>
<td>Slurry Seal</td>
<td>3.0</td>
<td>3.50</td>
<td>0.86</td>
</tr>
</tbody>
</table>
Mico-Cape Seal: 9yrs/Pre-PCI:34
Micro-Cape Seal: 6yrs/Pre-PCI: 56
Micro-Cape Seal: 1yr
FINDINGS

- The effective performance life of micro-surfacing cape seals is 7 years in the Truckee Meadows and 5 years in Incline Village.

- The effective performance life of slurry seal cape seals is 3.5 years in the Truckee Meadows and 3 years in Incline Village.

- The LCCA indicates that the micro-surfacing cape seal is more cost effective than the slurry seal cape seal at both locations of Truckee Meadows and Incline Village.
RECOMMENDATIONS

- Continue to use the micro-surfacing cape seal as a preventive maintenance treatment

- Conduct full mix designs and implement an effective QA testing program for the cape seal projects

- Implement an effective crack sealing program prior to the application of the cape seal treatment

- Investigate the various individual distresses on the existing pavement
THANK YOU FOR YOUR ATTENDANCE

Visit our websites at:
www.wrsc.unr.edu

Contact Information:
Peter E. Sebaaly, psebaaly@unr.edu, 775-784-6565
Elie Y. Hajj, elieh@unr.edu, 775-784-1180